7 research outputs found

    Development of a Wireless Mobile Computing Platform for Fall Risk Prediction

    Get PDF
    Falls are a major health risk with which the elderly and disabled must contend. Scientific research on smartphone-based gait detection systems using the Internet of Things (IoT) has recently become an important component in monitoring injuries due to these falls. Analysis of human gait for detecting falls is the subject of many research projects. Progress in these systems, the capabilities of smartphones, and the IoT are enabling the advancement of sophisticated mobile computing applications that detect falls after they have occurred. This detection has been the focus of most fall-related research; however, ensuring preventive measures that predict a fall is the goal of this health monitoring system. By performing a thorough investigation of existing systems and using predictive analytics, we built a novel mobile application/system that uses smartphone and smart-shoe sensors to predict and alert the user of a fall before it happens. The major focus of this dissertation has been to develop and implement this unique system to help predict the risk of falls. We used built-in sensors --accelerometer and gyroscope-- in smartphones and a sensor embedded smart-shoe. The smart-shoe contains four pressure sensors with a Wi-Fi communication module to unobtrusively collect data. The interactions between these sensors and the user resulted in distinct challenges for this research while also creating new performance goals based on the unique characteristics of this system. In addition to providing an exciting new tool for fall prediction, this work makes several contributions to current and future generation mobile computing research

    Challenges in Developing Applications for Aging Populations

    Get PDF
    Elderly individuals can greatly benefit from the use of computer applications, which can assist in monitoring health conditions, staying in contact with friends and family, and even learning new things. However, developing accessible applications for an elderly user can be a daunting task for developers. Since the advent of the personal computer, the benefits and challenges of developing applications for older adults have been a hot topic of discussion. In this chapter, the authors discuss the various challenges developers who wish to create applications for the elderly computer user face, including age-related impairments, generational differences in computer use, and the hardware constraints mobile devices pose for application developers. Although these challenges are concerning, each can be overcome after being properly identified

    Your Walk is My Command: Gait Detection on Unconstrained Smartphone Using IoT System

    No full text
    Scientific gait analysis through the Internet of Things (IoT) is able to provide an overall assessment of observations of daily living . All existing biomechanical models for predicting injuries in the elderly mainly consider the gait related parameters. Their accuracy is limited because injuries due to falls are significantly affected by different gait events in the gait cycle. The objective of this study is to develop a biomechanical model for improving subject-specific prediction of when different gait cycle events will induce falls. For this research, we designed and implemented a smart-shoe with a Wi-Fi communication module to discreetly collect insole pressure data in common environment. To the best of our knowledge, we are the first to use the gait biomechanical model implemented in smartphones to identify abnormal gait patterns for risk prediction. The proposed system, Your Walk is My Command, can warn the user about their abnormal gait and possibly save them from a forthcoming injuries

    An Energy Efficient Wearable Smart IoT System to Predict Cardiac Arrest

    No full text
    Recently, many people have become more concerned about having a sudden cardiac arrest. With the increase in popularity of smart wearable devices, an opportunity to provide an Internet of Things (IoT) solution has become more available. Unfortunately, out of hospital survival rates are low for people suffering from sudden cardiac arrests. The objective of this research is to present a multisensory system using a smart IoT system that can collect Body Area Sensor (BAS) data to provide early warning of an impending cardiac arrest. The goal is to design and develop an integrated smart IoT system with a low power communication module to discreetly collect heart rates and body temperatures using a smartphone without it impeding on everyday life. This research introduces the use of signal processing and machine-learning techniques for sensor data analytics to identify predict and/or sudden cardiac arrests with a high accuracy

    iPrevention: Towards a Novel Real-Time Smartphone-Based Fall Prevention System

    No full text
    Falling remains one of the leading causes of hospitalization and death for the elderly all around the world. The considerable risk of falls and the substantial increase of the elderly population have stimulated scientific research on smartphone-based fall detection systems recently. Even though these systems are helpful for fall detection, the best way to reduce the number of falls and their consequences is to prevent them from happening in the first place. Therefore, our focus is on fall prevention rather than fall detection. To address the issue of fall prevention, in this paper, we propose a smartphone-based fall prevention system that can alert the user about their abnormal walking pattern. Most current systems merely detect a fall whereas our approach attempts to identify high-risk gait patterns and alert the user to save them from an imminent fall. Our system uses a gait analysis approach that couples cycle detection with feature extraction to detect gait abnormality. We validated our approach using a decision tree with 10-fold cross validation and found 99.8% accuracy in gait abnormality detection. To the best of our knowledge, we are the first to use the built-in accelerometer and gyroscope of the smartphone to identify abnormal gaits in users for fall prevention
    corecore